Skip to main content

Advertisement

Log in

Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

While various materials have been developed for bone substitute and bone tissue engineering applications over the last decades, processing techniques meeting the high demands of scaffold shaping are still under development. Individually adapted and mechanically optimised scaffolds can be derived from calcium phosphate (CaP-) ceramics via rapid prototyping (RP). In this study, porous ceramic scaffolds with a periodic pattern of interconnecting pores were prepared from hydroxyapatite, β-tricalcium phosphate and biphasic calcium phosphates using a negative-mould RP technique. Moulds predetermining various pore patterns (round and square cross section, perpendicular and 60° inclined orientation) were manufactured via a wax printer and subsequently impregnated with CaP-ceramic slurries. Different pore patterns resulted in macroporosity values ranging from about 26.0–71.9 vol% with pore diameters of approximately 340 μm. Compressive strength of the specimens (1.3–27.6 MPa) was found to be mainly influenced by the phase composition as well as the macroporosity, both exceeding the influence of the pore geometry. A maximum was found for scaffolds with 60 wt% hydroxyapatite and 26.0 vol% open porosity. It has been shown that wax ink-jet printing allows to process CaP-ceramic into scaffolds with highly defined geometry, exhibiting strength values that can be adjusted by phase composition and pore geometry. This strength level is within and above the range of human cancellous bone. Therefore, this technique is well suited to manufacture scaffolds for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991;2:187–208.

    Article  CAS  PubMed  Google Scholar 

  2. Habibovic P, de Groot K. Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med. 2007;1:25–32.

    Article  CAS  PubMed  Google Scholar 

  3. Dorozhkin S, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002;41:3130–46.

    Article  CAS  PubMed  Google Scholar 

  4. Hing KH. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci. 2004;326:2821–50.

    Article  Google Scholar 

  5. Rao WR, Boehm RF. A study of sintered apatites. J Dent Res. 1974;53:1351–4.

    CAS  PubMed  Google Scholar 

  6. De With G, Van Dijk HJA, Hattu N, Prijs K. Preparation, microstructure and mechanical properties of dense polycrystalline hydroxy apatite. J Mater Sci. 1981;16:1592–8.

    Article  ADS  Google Scholar 

  7. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2009;31(7):1465–85.

    Article  PubMed  Google Scholar 

  8. Akao M, Aoki H, Kato K. Mechanical properties of sintered hydroxyapatite for prosthetic applications. J Mater Sci. 1981;16:809–12.

    Article  CAS  ADS  Google Scholar 

  9. Metsger DS, Rieger MR, Foreman DW. Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic. J Mater Sci Mater Med. 1999;10:9–17.

    Article  CAS  PubMed  Google Scholar 

  10. Driessen AA, Klein CP, de Groot K. Preparation and some properties of sintered beta-whitlockite. Biomaterials. 1982;3:113–6.

    Article  CAS  PubMed  Google Scholar 

  11. Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH. Hydroxylapatite synthesis and characterization in dense polycrystalline form. Synthesis and fabrication of β-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. J Mater Sci. 1979;14:142–50.

    Article  CAS  ADS  Google Scholar 

  12. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998;19:1473–8.

    Article  CAS  PubMed  Google Scholar 

  13. Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials. 2001;22:1643–51.

    Article  CAS  PubMed  Google Scholar 

  14. Rice JM, Hunt JA, Gallagher JA. Quantitative evaluation of the biocompatible and osteogenic properties of a range of biphasic calcium phosphate (BCP) granules using primary cultures of human osteoblasts and monocytes. Calcif Tissue Int. 2003;72:726–36.

    Article  CAS  PubMed  Google Scholar 

  15. Mayr H, Schlüfter S, Detsch R, Ziegler G. Influence of phase composition on degradation and resorption of biphasic calcium phosphate ceramics. Key Eng Mat. 2008;361–363:1043–6.

    Article  Google Scholar 

  16. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med. 2003;14:195–200.

    Article  CAS  PubMed  Google Scholar 

  17. Hing KA. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol. 2005;2:184–9.

    Article  CAS  Google Scholar 

  18. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  CAS  PubMed  Google Scholar 

  19. Frosch K, Barvencik F, Viereck V, Lohmann CH, Dresing K, Breme J, Brunner E, Sturmer KM. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J Biomed Mater Res A. 2004;68:325–34.

    Article  PubMed  Google Scholar 

  20. Liu D. Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic. Ceram Int. 1997;23:135–9.

    Article  CAS  Google Scholar 

  21. Rice RW. Comparison of stress concentration versus minimum solid area based mechanical property-porosity relations. J Mater Sci. 1993;28:2187–90.

    Article  CAS  ADS  Google Scholar 

  22. Gibson LJ, Ashby MF. Cellular solids—structure and properties. 2nd ed. ed. Cambridge, UK: Cambridge University; 1997.

    Google Scholar 

  23. Zyman ZZ, Tkachenko MV, Polevodin DV. Preparation and characterization of biphasic calcium phosphate ceramics of desired composition. J Mater Sci Mater Med. 2008;19:2819–25.

    Article  CAS  PubMed  Google Scholar 

  24. Kwon S, Jun Y, Hong S, Lee I, Kim H, Won YY. Calcium phosphate bioceramics with various porosities and dissolution rates. J Am Ceram Soc. 2002;85:3129–31.

    Article  CAS  Google Scholar 

  25. Guo G, Xu K, Han Y. The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. J Biomed Mater Res B Appl Biomater. 2007;88A:43–52.

    Google Scholar 

  26. Raynaud S, Champion E, Lafon JP, Bernache-Assolant D. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials. 2002;23:1081–9.

    Article  CAS  PubMed  Google Scholar 

  27. Royer A, Viguie JC, Heughebaert M, Heughebaert JC. Stoichiometry of hydroxyapatite: influence on the flexural strength. J Mater Sci Mater Med. 1993;4:76–82.

    Article  CAS  Google Scholar 

  28. Gauthier O, Bouler JM, Aguado E, Legeros RZ, Pilet P, Daculsi G. Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics. J Mater Sci Mater Med. 1999;10:199–204.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Fan H, Xiao Y, Zhang X. Fabrication and characterisation of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering. Mater Lett. 2006;60:455–8.

    Article  CAS  Google Scholar 

  30. Puértolas JA, Vadilloa JL, Sánchez-Salcedoc S, Nietoc A, Gómez-Barrenae E, Vallet-Regí M. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate–agarose scaffolds for bone regeneration. Acta Biomater. 2010. doi:10.1016/j.actbio.2010.07.032.

  31. Deschamps AA, Claase MB, Sleijster WJ, de Bruijn JD. Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone. J Control Release. 2002;78:175–86.

    Article  CAS  PubMed  Google Scholar 

  32. Deisinger U, Stenzel F, Ziegler G. Development of hydroxyapatite ceramics with tailored pore structure. Key Eng Mater. 2004;254–256:977–80.

    Article  Google Scholar 

  33. Michna S, Wu W, Lewis J. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials. 2005;26:5632–9.

    Article  CAS  PubMed  Google Scholar 

  34. Deisinger U, Irlinger F, Pelzer R, Ziegler G. 3D-Printing of HA-scaffolds for the application as bone substitute material. cfi-Ceram Forum Int. 2006;83:75–8.

    Google Scholar 

  35. Vorndran E, Klamer M, Klammert U, Grover LM, Patel S, Barralet JE, Gbureck U. 3D powder printing of b-tricalcium phosphate ceramics using different strategies. Adv Eng Mat. 2009;10:B67–71.

    Article  Google Scholar 

  36. Deisinger U, Leiderer M, Detsch R, Hamisch S, Ziegler G. Extrusion freeform fabrication technique for tailoring hydroxyapatite scaffolds for bone tissue engineering applications. Cytotherapy. 2006;S2:15.

    Google Scholar 

  37. Simon JL, Michna S, Lewis JA, Rekow ED, Thompson VP, Smay JE, Yampolsky A, Parsons JR, Ricci JL. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J Biomed Mater Res A. 2007;83:747–58.

    PubMed  Google Scholar 

  38. Rumpler M, Woesz A, Varga F, Manjubala I, Klaushofer K, Fratzl P. Three-dimensional growth behavior of osteoblasts on biomimetic hydroxylapatite scaffolds. J Biomed Mater Res A. 2007;81:40–50.

    CAS  PubMed  Google Scholar 

  39. Chu TM, Halloran JW, Hollister SJ. Hydroxyapatite implants with designed internal architecture. J Mater Sci Mater Med. 2001;12:471–8.

    Article  CAS  PubMed  Google Scholar 

  40. Deisinger U, Hamisch S, Schumacher M, Uhl F, Detsch R, Ziegler G. Fabrication of tailored hydroxyapatite scaffolds: comparison of a direct and an indirect rapid prototyping technique. Key Eng Mat. 2008;361–363:915–8.

    Article  Google Scholar 

  41. Limpanuphap S, Derby B. Manufacture of biomaterials by a novel printing process. J Mater Sci Mater Med. 2002;13:1163–6.

    Article  CAS  PubMed  Google Scholar 

  42. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24:181–94.

    Article  CAS  PubMed  Google Scholar 

  43. Chu TG, Warden SJ, Turner C. Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials. 2007;28:459–67.

    Article  CAS  PubMed  Google Scholar 

  44. Rumpler M, Woesz A, Dunlop JW, van Dongen JT, Fratzl P. The effect of geometry on three-dimensional tissue growth. J R Soc Interface. 2008;5:1173–80.

    Article  PubMed  Google Scholar 

  45. Deisinger U. Synthetisches Knochenersatzmaterial mit spongiosa-ähnlicher Struktur: Herstellung, materialwissenschaftliche Charakterisierung und biologisches Verhalten von Calciumphosphat-basierten Keramiken. Berlin: Mensch-und-Buch-Verlag; 2009.

    Google Scholar 

  46. Hattiangadi A, Bandyopadhyay A. Modeling of multiple pore ceramic materials fabricated via fused deposition process. Scripta Mater. 2000;42:581–8.

    Article  CAS  Google Scholar 

  47. Tsukrov I, Kachanov M. Stress concentrations and microfracturing patterns in a brittle-elastic solid with interacting pores of diverse shapes. Int J Solids Struct. 1997;34:2887–904.

    Article  MATH  Google Scholar 

  48. Carter DR, Haynes WC. The compressive behaviour of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59:954–62.

    CAS  PubMed  Google Scholar 

  49. Detsch R, Uhl F, Deisinger U, Ziegler G. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J Mater Sci Mater Med. 2008;19:1491–6.

    Article  CAS  PubMed  Google Scholar 

  50. Rumpler M, Woesz A, Dunlop JW, van Dongen JT, Fratzl P. The effect of geometry on three-dimensional tissue growth. J R Soc Interface. 2008;5:1173–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schumacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, M., Deisinger, U., Detsch, R. et al. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. J Mater Sci: Mater Med 21, 3119–3127 (2010). https://doi.org/10.1007/s10856-010-4166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4166-6

Keywords

Navigation